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What an animal consumes and what an animal digests and assimilates for

energetic demands are not always synonymous. Sharks, uniformly accepted

as carnivores, have guts that are presumed to be well suited for a high-

protein diet. However, the bonnethead shark (Sphyrna tiburo), which is

abundant in critical seagrass habitats, has been previously shown to con-

sume copious amounts of seagrass (up to 62.1% of gut content mass),

although it is unknown if they can digest and assimilate seagrass nutrients.

To determine if bonnetheads digest seagrass nutrients, captive sharks were

fed a 13C-labelled seagrass diet. Digestibility analyses, digestive enzyme

assays and stable isotope analyses were used to determine the bonnethead

shark’s capacity for digesting and assimilating seagrass material.

Compound-specific stable isotope analysis showed that sharks assimilated

seagrass carbon (13.6+ 6.77‰ d13C mean+ s.d. for all sharks and all

amino acid types analysed) with 50+2% digestibility of seagrass organic

matter. Additionally, cellulose-component-degrading enzyme activities

were detected in shark hindguts. We show that a coastal shark is digesting

seagrass with at least moderate efficiency, which has ecological implications

due to the stabilizing role of omnivory and nutrient transport within fragile

seagrass ecosystems.
1. Background
Understanding what an animal actually digests and assimilates as opposed to

what it simply eats allows an understanding of the role of that organism in

terms of foraging, nutrient excretion and habitat use [1–6]. Overall, the nutri-

tional ecology of fishes (including sharks) is insufficiently studied outside of

a few species used in aquaculture [1,2,7]. Carnivores, such as sharks, appear

specialized for digesting high-protein diets, as indicated by elevated digestibil-

ity of protein [8,9] and high activity levels of protein-degrading digestive

enzymes in their guts [2,10–12]. Omnivores, on the other hand, also digest

plant material, and thus face the difficulty of digesting foods (like seagrass)

that are low in protein, and are sheathed in fibrous cell walls. As such,

omnivores generally have different digestive biochemistry (e.g. greater carbohy-

drase activities) [13], as well as varying diversities and abundances of enteric

microbial communities in comparison to carnivores [14–16]. In an ecological

context, the effect of omnivores on ecosystem stability has been debated, but

in marine systems, omnivorous predators that feed across trophic levels with

strong interactions have been shown to buffer food webs against trophic

cascades [17–20].

With population estimates of approximately 4.9 million [21] individuals

along the Atlantic and Gulf of Mexico coasts of the USA, the bonnethead

shark (Sphyrna tiburo) is one of the most abundant and conspicuous members

of seagrass meadows and many other soft bottom habitats in US coastal

waters and beyond. Although they are frequently listed as carnivorous, con-

suming mostly crustaceans and mollusks [22], they are also known for

consuming copious amounts (up to 62% of gut content mass) of seagrass in
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Figure 1. Adult bonnethead shark, S. tiburo, with its digestive tract (adapted from [2,10]). Ninety per cent seagrass and 10% squid diet illustration by LLM Pandori.
(Online version in colour.)
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some populations [23], and for feeding at lower trophic levels

than other closely related species [24]. However, what an

animal ingests and what they digest and assimilate are not

the same thing [7], and hence the scientific community has

largely dismissed seagrass ingestion by this shark as inciden-

tal intake that does not contribute to the shark’s nutritional

ecology (with the exception of Bethea et al. [23,24]). Sharks

are uniformly accepted as carnivorous [1,2,22], so this

assumption is not unwarranted. However, the sheer abun-

dance of bonnethead sharks ingesting seagrass in these

environments, coupled with the observation that seagrass

in the bonnethead distal intestine (DI) appears ‘degraded’

in comparison to fresh seagrass [23], raises the possibility

that these sharks are actually assimilating nutrients from

seagrass. If this were the case, it would mean we would

need to re-evaluate the roles of bonnethead sharks in seagrass

ecology because they could be responsible for significant

grazing and nutrient transport within fragile seagrass eco-

systems. Seagrass meadows are the most widespread

coastal ecosystem on earth [25] and provide a multitude of

ecological and economic services [26]. Some of these services

include cross-ecosystem nutrient transfer [27], erosion control

[28], pollution and pathogen management [25,29,30], provid-

ing habitat and protected nursery areas for thousands of fish

and invertebrate species, thereby supporting the fishing

industry [27], acting as a CO2 sink [26] and producing

large quantities of oxygen [26]. As such, it is imperative

that studies of trophic interactions in seagrass habitats cor-

rectly identify the diets and digestive strategies of key,

abundant taxa.

To determine if bonnethead sharks are capable of digesting

and assimilating seagrass nutrients, we fed captive sharks a

90% 13C-labelled seagrass and 10% squid diet (figure 1; total-

ling 5% of their body weight per day) over a three-week

period. Using a combination of captive feeding trials, stable

isotope analyses, digestibility analyses and enzymatic bio-

chemistry, we show that bonnetheads are omnivorous and

can assimilate plant organic material. Furthermore, they

demonstrate positive somatic growth on a plant-based diet,

and possess the enzymatic biochemistry needed to digest

even some of the fibrous portions of seagrass.
2. Methods
All methods mentioned here are described in detail in the

electronic supplementary material.
(a) Seagrass collections and shark capture
Seagrass was collected in Florida Bay and transported in coolers

filled with seawater and an aquarium bubbler to the Florida

International University (FIU) Biscayne Bay campus outdoor

mesocosm facility. Seagrass was re-planted in terracotta pots

within a closed, re-circulating, tank system (approx. 454 l) and

placed in direct sunlight. We labelled the seagrass by directly

adding powdered 13C-labelled sodium bicarbonate (1 g; 99 at. %,

Sigma Aldrich Product no. 372382) into the seawater in the tank.

A chiller (Aqua Euro USA, model MC-1/2 hp) was used to keep

the water in the tank at 308C. The water in the tank underwent

a water change once per week and new 13C-labelled sodium

bicarbonate (1 g) was added each time.

Bonnethead sharks were caught off the coast of Layton, FL, on

Long Key (24850’2.600 N 80848’32.300 W) and off the southwestern

coast of Key Biscayne (25841’05.900 N 80810’41.000 W). There were

four incidental mortalities and those individuals were immedi-

ately dissected for intestinal, liver and muscle tissue samples and

henceforth are referred to as the ‘wild-caught’ sharks. Five

additional sharks were transported alive to FIU to undergo feeding

trials (henceforth the ‘laboratory-fed’ sharks).
(b) Feeding events and faecal collections
Once at FIU, bonnethead sharks (n ¼ 5) were kept in a 40 337 l

circular flow-through tank receiving water pumped directly

from Biscayne Bay and acclimated for at least 24 h. After 24 h,

the sharks were individually anaesthetized via submersion

in a 113 l bin with a 0.2% MS-222 solution buffered with

NaOH via recirculating aquarium powerhead. Sharks were

quickly weighed, their dorsal fins marked with a unique, non-

toxic, water-resistant paint color (ECOS Paints), and then

200 ml of blood (composing less than 1% of the blood volume

of each shark) was drawn with a 25 G needle from the haemal

arch, just posterior of the anal fin. Blood was centrifuged to sep-

arate the plasma and RBC phases, dried at 608C, and stored in a

dry location for later use in stable isotopic measurements. Blood

was drawn in this manner once every week for three weeks. Once

the blood was drawn, the shark was placed back into the flow-

through 40 337 l tank for recovery. Sharks were monitored until

normal ventilation resumed.

Each shark was fed a 90% seagrass, 10% squid (Doryteuthis
opalescens) diet equalling 5% of their initial body weight daily

for three weeks. Faecal material was collected daily via siphoning

through a 250 mm mesh. Water passed through the mesh while

faecal material was collected on top. Faecal material was trans-

ferred into 50 ml conical tubes and dried at 608C for later use

in digestibility analyses in order to determine digestive effi-

ciency. Approximately 5 g (dry mass) of faecal material was

collected per shark over the course of the three weeks.

http://rspb.royalsocietypublishing.org/


Table 1. Mean (+s.d.) digestibility (%) of protein, lipid, soluble
carbohydrates, NDF, ADF and total organic matter of a 90% seagrass, 10%
squid diet by the bonnethead shark.

constituent digestibility (%)

protein 92+ 3

lipid 51+ 7

soluble carbohydrate 80+ 3

neutral detergent fibre 52+ 3

acid detergent fibre 43+ 4

total organic matter 50+ 2
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(c) Dissections and tissue preparation
At the conclusion of the three-week feeding trial, all laboratory-fed

individuals were euthanized in 1% MS-222 solution, measured

(standard length (SL), weighed (body mass (BM)) and dissected

on a chilled (approx. 48C) cutting board. Whole gastrointestinal

tracts were removed by cutting at the oesophagus and at the

cloacal opening. Whole intestines (without the stomach) were

weighed and the intestine length (IL) was measured. The intestine

was then divided into three sections: proximal intestine (PI), spiral

intestine (SI) and DI [31,32]. Each of these sections was then further

subdivided into three sections (i.e. PI1, PI2, PI3, etc.) in order to

increase the resolution of understanding enzyme activity levels

along the digestive tract.

(d) Digestibility analyses
The protein, soluble carbohydrate, lipid and total organic matter

contents were determined for the 90% seagrass/10% squid diet,

as well as for the faecal material from all of the lab-fed sharks.

The following equation was used to determine the percentage

digestibility of each macronutrient type by the shark:

%digestibility ¼ ðash-adjusted ingestedÞ–ðdefecatedÞ
ash-adjusted ingested

� �
� 100:

Fibre digestibility was determined using an ANKOM 200/220

Fiber Analyzer, following the ANKOM suggested procedures

[33,34] for neutral detergent fibre (NDF; which includes cellulose

and hemicellulose) and acid detergent fibre (ADF; which

excludes cellulose).

To determine if the laboratory-fed sharks were meeting their

daily metabolic demands on the prescribed diet, bonnethead

shark metabolic rate was estimated using the equation from

Parsons [35]:

M ¼ ð68:9þ 177:8WÞ � 3:25

W

� �
� 24,

where M is the metabolic rate (kcal kg21 d21) and W the weight

in kilograms. The initial wet weight of the sharks was used

here. Coefficients were based on the constants for fish [36]. The

amount (g) of the diet consumed by each shark was recorded daily.

(e) Digestive enzyme assays
Intestinal homogenates were produced as described by Leigh et al.
[32]. In order to determine the activity of enzymes that digest

soluble carbohydrate, protein, lipid and fibrous components of

seagrass, we assayed a-amylase, maltase, trypsin, aminopepti-

dase, lipase and b-glucosidase activity for all intestinal regions.

All enzyme assays were carried out at 228C in duplicate or tripli-

cate using a BioTek Synergy H1 Hybrid spectrophotometer/

fluorometer equipped with a monochromator (BioTek, Winooski,

VT, USA). All assay protocols generally followed methods detailed

in Leigh et al. [32], unless otherwise noted.

( f ) Stable isotope analysis
To measure d13C signatures, samples (red blood cells, plasma,

liver tissue and seagrass) were thoroughly dried at 608C. Samples

were then individually dipped into liquid nitrogen and ground

to a powder using a mortar and pestle. Ground samples

(approx. 700 mg for shark blood and tissues samples and

approx. 2 mg for seagrass tissues) were then transferred into

individual 5 mm � 9 mm tin capsules (Costech Analytical Tech-

nologies). Samples were sent to the University of Florida Stable

Isotope Facility for processing using a Thermo Delta V Plus

isotope ratio mass spectrometer. Lipid was extracted from lab-

oratory-fed shark liver samples and seagrass samples using a

soxhlet [37] prior to compound-specific stable isotope analyses
(CSSIA). The amino acids measured via CSSIA were aspartate,

alanine, glutamate, glycine, isoleucine, leucine, lysine, methion-

ine, phenylalanine, proline, threonine, tyrosine and valine

because these are commonly measured in studies of nutritional

physiology of marine fishes [38,39].
(g) Statistical analysis
Comparisons of enzymatic activities were made among gut

regions with analysis of variance followed by a Tukey’s honest

significant difference with a family error rate of p ¼ 0.05. Com-

parisons of enzymatic activities between laboratory-fed sharks

and wild-caught sharks were made using unpaired t-tests with

a Bonferroni-corrected error rate of p ¼ 0.006. Comparisons

between laboratory-fed shark liver amino acid d13C values and

seagrass amino acid d13C values were made using unpaired

t-tests with a Bonferroni-corrected error rate of p ¼ 0.004. All

statistical tests were performed in R studio (v. 1.0.136).
3. Results and conclusion
We provide conclusive evidence that bonnethead sharks,

animals previously thought to be solely carnivorous, can assim-

ilate nutrients from seagrass. This is the first species of shark

ever to be shown to have an omnivorous digestive strategy.

Laboratory-fed sharks all gained weight on their seagrass-

heavy diet (mean: 6.65+3.46% weight gain from initial BM;

electronic supplementary material, table S1) and digested the

total organic matter (50+2%) and the fibre in seagrass (52+
3% for NDF and 43+4% for ADF; table 1) with moderate effi-

ciency. They also more than met their energetic demands on

their prescribed laboratory diet (average caloric need: 28 kcal

d21 [35], average calories digested in the laboratory feeding

trial: 203 kcal d21; electronic supplementary material, table

S1). Remarkably, the bonnethead’s digestibility of organic

matter is comparable to juvenile green sea turtles (Chelonia
mydas; mean seagrass organic matter digestibility of 44.7%)

[18]. As green sea turtles mature, they become almost entirely

herbivorous, and their digestibility of seagrass increases

(mean seagrass organic matter digestibility of 64.6%) [18] in

parallel with a longer digestive tract and a more diverse micro-

biome [40]. Therefore, bonnetheads are capable of digesting

components of seagrass, with similar effectiveness to omni-

vores, making them the only shark species known to have the

ability to digest plant material [2,10]. For comparison, the carni-

vorous lizard Crotaphytus collaris digested flowers with only

32% efficiency, whereas the herbivorous Sauromalus obesus
digested these same flowers with 67% efficiency [41], showing

http://rspb.royalsocietypublishing.org/
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that not all carnivores can digest plant material efficiently.

Indeed, pandas, which are herbivores with a ‘carnivorous’

gut [42], have enteric microbiomes that differ from other herbi-

vores [43] and also show about 20% organic matter digestibility

of bamboo [42]. Pandas make a living on high intake and digest

mostly the soluble portions of bamboo [44]. Thus, bonnethead

sharks are considerably better at digesting seagrass than either

of these terrestrial examples [41,44].

Enzymatic assays revealed that protein-degrading enzyme

(aminopeptidase and trypsin) and lipid-degrading enzyme

(lipase) activities peaked in the proximal or SI for both lab-

fed and wild-caught sharks, which is congruent with previous

work on wild-caught bonnetheads, and other fishes (electronic

supplementary material, figure S1) [2,10,13,32,45,46]. The SI is

likely the primary site of amino acid and fatty acid absorption

in bonnetheads and other shark species [47]. While carbo-

hydrate-degrading enzyme (amylase and maltase) activities

were similar between laboratory-fed and wild-caught sharks,

maltase activity was relatively low and constant throughout

the digestive tract in both groups (figure 2; electronic sup-

plementary material, figure S1) [10]. However, the amylase

levels observed in bonnethead sharks are high for a carnivor-

ous fish and comparable with omnivorous fish such as

Xiphister atropurpureus [13]. Coupled with the bonnethead’s

high digestibility of soluble carbohydrates (82+5%; table 1),

this indicates efficient digestion of the soluble carbohydrates

(like starch) [48] found in seagrass material.

The presence of elevated b-glucosidase activity in the hind-

gut of both the laboratory-fed and wild-caught bonnethead

sharks indicate the capacity for the digestion of cellulose break-

down products (e.g. cellobiose), likely with aid from microbial

symbionts, as previously suggested for bonnetheads (figure 2)

[10]. The fact that b-glucosidase activity was significantly

higher in the hindgut compared to other gut regions (PI and

SI; figures 1 and 2) indicates likely involvement from the gut

microbiome in the digestion of seagrass fibre. Surprisingly, the

activity levels of b-glucosidase in the bonnethead hindgut are
on a par with activities observed in the hindguts of

Cebidichthys violaceus, a herbivorous, teleost fish that digests

algal material with assistance from their gut microbiome [13].

Evidence of elevated b-glucosidase activities in the hindgut of

bonnetheads differentiates them from carnivores and merits

further investigation into the role of the microbiome in the diges-

tion of seagrass material. Sharks also have highly acidic stomachs

(pH 1–2) [11,49], whereas most herbivorous teleost species have

slightly higher average stomach pH values of 2–3 [50,51]. As

sharks lack the pharyngeal (secondary) jaws that many herbivor-

ous species use for mastication or trituration of plant material, the

highly acidic shark stomach could weaken the cell walls and

plasma membranes of seagrass, so that digestive enzymes can

enter the cells and digest seagrass cell contents [51]. Bonnethead

sharks also have molariform teeth that are presumed to be for

crushing hard prey [52], but these teeth may also be capable of

seagrass mastication, which could aid in the digestive process.

While digestibility and enzymatic analyses highlight that

bonnethead sharks have the capacity to breakdown seagrass,

the stable isotope analyses show that they can assimilate

plant molecules [53]. We measured a clear increase in the

d13C signature in the blood and liver tissues of the labora-

tory-fed sharks over the course of the feeding trial (figures 3

and 4). The 13C-labelled seagrass used in the feeding trials

had a mean d13C of 104.9‰ (mean atom % of 1.25+0.05) com-

pared with a mean d13C of 213.4‰ (mean atom % of 1.08+
0.02) for wild, non-labelled seagrass (figure 3). The mean

d13C signature of the blood plasma from the laboratory-fed

sharks increased from 212.1‰ at the beginning of the feeding

trial to 2743.9‰ at the end of the feeding trial (figure 3). The

red blood cells also exhibited an increase from a mean of

211.5‰ to 19‰ d13C over the course of the feeding trial.

The liver tissues of wild-caught sharks had a mean d13C

value of 212.23‰ (mean atom % of 1.09+0.02), while the lab-

oratory-fed sharks had liver tissues with a mean d13C value of

357.2‰ (mean atom % of 1.49+0.09) at the conclusion of the

three-week feeding trial (figure 4).

http://rspb.royalsocietypublishing.org/
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The combination of these data shows that bonnethead

sharks are not only consuming copious amount of seagrass

(8.8–62.1% of gut content mass) [23], but they are actually

capable of digesting and assimilating seagrass nutrients,

making them clear omnivores. As the bonnethead shark

digestive tract is morphologically similar to other closely

related strict carnivores, it shows that a ‘carnivorous’ gut

can digest at least parts of ingested plant material. These

results in the bonnethead shark are also consistent with

observations that many herbivorous fishes lack what would

be called a ‘specialized’ gut morphology for housing enteric

symbionts that aid in the digestion of plants [7,20], unlike

the myriad specializations seen in mammals [54].

We do recognize that the d13C values for both blood plasma

and liver tissues are exceptionally high compared to the bulk
d13C values for the seagrass used in the feeding trial. The

most likely explanation for this elevated signal has to do with

urea, which in sharks, is synthesized via the ornithine urea

cycle in the liver, making urea a sink for bicarbonate carbon

[55–60]. Sharks are unique from most teleost fishes in that

their total blood osmolarity (1118 mOsm l21 for dogfish

sharks) [58] is similar to that of seawater (1050 mOsm l21)

[59] and that nearly half (441 mM l21) of this is accounted for

by urea [58]. As urea synthesis occurs in the liver and uses

CO2 [55,61], if 13C-labelled bicarbonate in the seagrass was

absorbed in the digestive tract and then equilibrated with the

blood bicarbonate, this would explain the exceptionally high

d13C values in the blood plasma and liver tissues [57,60,62–

64]. This also explains the discrepancy between the high d13C

values in the plasma versus the red blood cells, where the red

blood cells have a much slower isotopic turnover rate (more

than four months versus approximately one to two months

for plasma proteins) [60,62], and the red blood cells do not con-

tain bicarbonate or urea. The red blood cell isotopic signature,

therefore, represents labelled proteins, which are similar to the

labeled amino acids in the liver (figure 4).

Furthermore, the CSSIA shows that amino acids in the lab-

oratory-fed sharks livers were also labelled, making it unlikely

that 13C-labelled sodium bicarbonate in the sharks livers caused

this result (figure 4; electronic supplementary material, table

S2). Moreover, the CSSIA analysis allowed us to identify

those amino acids that shared the same d13C signature among

the sharks livers and the seagrass as some of the essential

amino acids for bonnetheads: aspartate, isoleucine, leucine,

methionine, valine and proline (figure 4; electronic supplemen-

tary material, table S3) [38,39]. The other amino acids (alanine,

glutamate, glycine, lysine, phenylalanine, threonine, tyrosine)

were more enriched in 13C in the grass than in the sharks (elec-

tronic supplementary material, table S3), but this could reflect

the fact that a three-week feeding trial was not sufficient to

allow complete turnover of all amino acids in the liver protein

[53]. Previous analyses of wild seagrass amino acids using

CSSIA showed that all of the amino acid d13C values were nega-

tive, similar to the bulk signatures (d13C values 211.1 to

215.9‰) of the wild seagrass [53]. Hence, each of our analyses

(including bulk seagrass, seagrass fibre and CSSIA) show that

all of the components of the seagrass in the current study

were indeed labelled with 13C (positive d13C values), and there-

fore the assimilation of the labelled carbon into the bonnethead

sharks must have come from the labelled seagrass and cannot

represent some components of wild seagrass (or any marine

resource) still persisting in the sharks’ tissues. The CSSIA and

enriched seagrass fibre isotopic signatures also argue against

the assimilated labelled carbon only coming from the labelled

bicarbonate, and in fact, some of the bulk liver isotopic signa-

ture could be contributed by liver glycogen synthesized from
13C-labelled glucose assimilated from seagrass tissues, includ-

ing the fibre, which was heavily labeled (figure 4). Finally, the

red blood cells d13C values were similar to those found in the

liver amino acids, showing that the actual proteins are enriched

at the level of amino acids in the red blood cells.

The sheer abundance of bonnethead sharks in coastal com-

munities (approx. 4.9 million individuals in the Atlantic and

Gulf of Mexico coastal waters of the USA) [21] coupled with

consumption and digestion of seagrass by these animals

suggests that we need to re-evaluate the role that bonnetheads

play in seagrass meadows, critical ecosystems that provide

habitat for thousands of fish species, filter the surrounding

http://rspb.royalsocietypublishing.org/
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water, act as a sink for atmospheric CO2 and produce large

quantities of oxygen [25,26]. Understanding how the consump-

tion and digestion habits of bonnethead sharks impacts

seagrass ecosystems is important as these omnivores may

stabilize food web dynamics and even play a role in nutrient

redistribution and transport. Bonnethead sharks often display

short-term residency to core areas within seagrass meadows,

but shift the location of these areas within a large home

range, suggesting that individuals may be able to transport

nutrients between and within habitat patches [65]. Considering

bonnethead sharks as omnivores, rather than carnivores, in

models of seagrass meadow function, and then testing the pre-

dictions of those models for management purposes, changes

our understanding of the fluxes of nutrients and energy

among trophic levels within each part of these ecosystems.

To better understand the ecological influence of sharks and

other marine predators, or any mobile consumers for that

matter, and how they may act as nutrient vectors, we need to

move beyond observations of just consumption or bite rates

and strive to understand, not only what consumers are

eating, but also what they are digesting and excreting back

into their environments (i.e. their nutritional physiology).

This is critical to effectively formulating conservation efforts

including trophic models [5,66].
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